Надежность тех систем при постоянных отказах. Основные понятия теории надежности. Системный подход к анализу возможных отказов: понятие, назначение, цели и этапы, порядок, границы исследования
Главная · Инноватика · Надежность тех систем при постоянных отказах. Основные понятия теории надежности. Системный подход к анализу возможных отказов: понятие, назначение, цели и этапы, порядок, границы исследования

Надежность тех систем при постоянных отказах. Основные понятия теории надежности. Системный подход к анализу возможных отказов: понятие, назначение, цели и этапы, порядок, границы исследования

Реферат

технический надежность жизненный цикл

Курсовой проект: __ с., __ табл., __источников.

надежность, частота отказа, схема, отказ, долговечность, безотказность.

Курсовой проект включает в себя решение двух заданий:

Первое задание связано с построением структурной схемы надежности технологической системы. Так же производится расчет надежности данной системы.

Второе задание связано с преобразованием заданной согласно варианту структурной схемы и определением показателей надежности. А так же разработка вариантов повышения надежности данной схемы.

Введение………………………………………………………………………

1. Проблемы надежности технических систем……………………………

1.1 Основы расчета надёжности……………………………………………

1.2 Системы с резервированием……………………………………………

2. Расчетная часть…………………………………………………………

2.1 Построение структурной схемы надёжности……………………………

2.2 Преобразование заданной структурной схемы и определение показателей надёжности…………………………………………………………………………..

Заключение……………………………………………………………………

Список использованных источников……………………………………

В данной курсовой работе использованы следующие нормативные документы:

ГОСТ 7.1-2003 СИБИД. Библиографическая запись. Библиографическое описание. Общие требования и правила составления

ГОСТ 27.301-95-М, 1996 Надежность в технике. Расчет надежности. Основные положения

СТП КубГТУ 4.2.6-2004 СМК. Учебно-организационная деятельность. Курсовое проектирование

Введение

Надежностью называют свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки. Расширение условий эксплуатации, повышение ответственности выполняемых техническими системами (ТС) функций, их усложнение приводит к повышению требований к надежности изделий.

Надежность является сложным свойством, и формируется такими составляющими, как безотказность, долговечность, восстанавливаемость и сохраняемость. Основным здесь является свойство безотказности - способность изделия непрерывно сохранять работоспособное состояние в течение времени. Потому наиболее важным в обеспечении надежности технических систем является повышение их безотказности.

Особенностью проблемы надежности является ее связь со всеми этапами “жизненного цикла” технической системы от зарождения идеи создания до списания: при расчете и проектировании изделия его надежность закладывается в проект, при изготовлении надежность обеспечивается, при эксплуатации - реализуется. Поэтому проблема надежности - комплексная проблема и решать ее необходимо на всех этапах и разными средствами. На этапе проектирования изделия определяется его структура, производится выбор или разработка элементной базы, поэтому здесь имеются наибольшие возможности обеспечения требуемого уровня надежности технической системы. Основным методом решения этой задачи являются расчеты надежности (в первую очередь - безотказности), в зависимости от структуры объекта и характеристик его составляющих частей, с последующей необходимой коррекцией проекта. Поэтому в данной курсовой работе рассчитывается надежность технической системы.

1. Проблемы надежности технических систем

1.1 Основы расчета надежности систем

Задача расчета надежности:определение показателей безотказности системы, состоящей из невосстанавливаемых элементов, по данным о надежности элементов и связях между ними. Цель расчета надежности:

Выбор того или иного конструктивного решения;

Выяснить возможность и целесообразность резервирования;

Выяснить, достижима ли требуемая надежность при существующей технологии разработки и производства.

Расчет надежности состоит из следующих этапов:

1. Определение состава рассчитываемых показателей надежности

2. Составление (синтез) структурной логической схемы надежности (структуры системы), основанное на анализе функционирования системы (какие блоки включены, в чем состоит их работа, перечень свойств исправной системы и т. п.), и выбор метода расчета надежности

3. Составление математической модели, связывающей рассчитываемые показатели системы с показателями надежности элементов

4. Выполнение расчета, анализ полученных результатов, корректировка расчетной модели

Структура системы – логическая схема взаимодействия элементов, определяющая работоспособность системы или иначе графическое отображение элементов системы, позволяющее однозначно определить состояние системы (работоспособное/неработоспособное) по состоянию (работоспособное/ неработоспособное) элементов. По структуре системы могут быть:

    система без резервирования (основная система);

    системы с резервированием.

Для одних и тех же систем могут быть составлены различные структурные схемы надежности в зависимости от вида отказов элементов. Математическая модель надежности – формальные преобразования, позволяющие получить расчетные формулы. Модели могут быть реализованы с помощью:

    метода интегральных и дифференциальных уравнений;

    на основе графа возможных состояний системы;

    на основе логико-вероятностных методов;

    на основе дедуктивного метода (дерево отказов).

Наиболее важным этапом расчета надежности является составление структуры системы и определение показателей надежности составляющих ее элементов. Во-первых, классифицируется понятие (вид) отказов, который существенным образом влияет на работоспособность системы. Во-вторых, в состав системы в виде отдельных элементов могут входить электрические соединения пайкой, сжатием или сваркой, а также другие соединения (штепсельные и пр.), поскольку на их долю приходится 10-50% общего числа отказов. В-третьих, имеется неполная информация о показателях надежности элементов, поэтому приходится либо интерполировать показатели, либо использовать показатели аналогов. Практически расчет надежности производится в несколько этапов:

1. На стадии составления технического задания на проектируемую систему, когда ее структура не определена, производится предварительная оценка надежности, исходя из априорной информации о надежности близких по характеру систем и надежности комплектующих элементов.

2. Составляется структурная схема с показателями надежности элементов, заданными при нормальных (номинальных) условиях эксплуатации.

3. Окончательный (коэффициентный) расчет надежности проводится на стадии завершения технического проекта, когда произведена эксплуатация опытных образцов и известны все возможные условия эксплуатации. При этом корректируются показатели надежности элементов, часто в сторону их уменьшения, вносятся изменения в структуру – выбирается резервирование.

  • 7. Структурно-логический анализ технических систем. Структурно - логические схемы надежности технических систем.
  • 8. Структурно-логический анализ технических систем. Анализ структурной надежности технических систем. Последовательность операций.
  • 9. Расчеты структурной надежности систем. Общая характеристика.
  • 10. Расчеты структурной надежности систем. Системы с последовательным соединением элементов.
  • 11. Расчеты структурной надежности систем. Системы с параллельным соединением элементов.
  • 13. Почти тоже что в 12
  • 14. Расчеты структурной надежности систем. Мостиковые системы. Метод прямого перебора.
  • 15. Расчеты структурной надежности систем. Мостиковые системы. Метод минимальных сечений.
  • 16. Расчеты структурной надежности систем. Мостиковые системы. Метод минимальных путей.
  • 17. Расчеты структурной надежности систем. Мостиковые системы. Метод разложения относительно особого элемента.
  • 18. Расчеты структурной надежности систем. Комбинированные системы.
  • 19. Повышение надежности технических систем. Методы повышения надежности
  • 23. Повышение надежности технических систем. Расчет надежности систем с облегченным и скользящим резервированием.
  • 26 Основные свойства объекта технического диагностирования. Ремонтопригодность.
  • 27 Основные свойства объекта технического диагностирования. Безотказность. Показатели безотказности.
  • 28.Основные свойства объекта технического диагностирования. Долговечность.
  • 29.Основные свойства объекта технического диагностирования. Сохраняемость.
  • 32. Методы прогнозирования отказов элементов (статистический и аппаратурный).
  • 33.Методы повышения надежности.Разработка.Изготовление.Эксплуатация.
  • 44. Cовременное состояние вопроса диагностики процессов механообработки и мехатронных станочных систем.
  • 45. Диагностика и распознавание образов. Основные понятия распознавания образов.
  • 46. Цель и основные задачи технической диагностики. Прикладные вопросы технической диагностики.
  • 39 Диагностирование цифровых устройств. Метод таблиц истинности.
  • 47.Основные задачи, возникающие при разработке систем
  • 48. Предварительная обработка образов и выбор признаков.
  • 52. Краткий обзор зарубежных и отечественных
  • 53. Станочные системы как объект диагностирования.
  • 55. Автоматизированный контроль и диагностика инструмента в процессе механообработки. Задачи автоматизированного контроля и диагностики инструмента.
  • 1. Надежность автоматизированных технических систем. Понятие надежности. Основные проблемы надежности.

    Надежностью называют свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки. Расширение условий эксплуатации, повышение ответственности выполняемых радиоэлектронными средствами (РЭС) функций, их усложнение приводит к повышению требований к надежности изделий.

    Надежность является сложным свойством, и формируется такими составляющими, как безотказность, долговечность, восстанавливаемость и сохраняемость. Основным здесь является свойство безотказности - способность изделия непрерывно сохранять работоспособное состояние в течение времени. Потому наиболее важным в обеспечении надежности РЭС является повышение их безотказности.

    Особенностью проблемы надежности является ее связь со всеми этапами “жизненного цикла” РЭС от зарождения идеи создания до списания: при расчете и проектировании изделия его надежность закладывается в проект при изготовлении надежность обеспечивается, при эксплуатации - реализуется. Поэтому проблема надежности - комплексная проблема и решать ее необходимо на всех этапах и разными средствами. На этапе проектирования изделия определяется его структура, производится выбор или разработка элементной базы, поэтому здесь имеются наибольшие возможности обеспечения требуемого уровня надежности РЭС. Основным методом решения этой задачи являются расчеты надежности (в первую очередь - безотказности), в зависимости от структуры объекта и характеристик его составляющих частей, с последующей необходимой коррекцией проекта.

    2 .Количественные характеристики безотказности. Наработка на отказ.

    Безотказность (и другие составляющие свойства надежности) РЭС проявляется через случайные величины, наработку до очередного отказа и количество отказов за заданное время. количественными характеристиками свойства здесь выступают вероятностные переменные.

    Наработка есть продолжительность или объем работы объекта. для РЭС естественно исчисление наработки в единицах времени, тогда как для других технических средств могут быть удобнее иные средства измерения (например, наработка автомобиля - в километрах пробега). Для невосстанавливаемых и восстанавливаемых изделий понятие наработки различается, в первом случае подразумевается наработка до первого отказа (он же является и последним отказом), во втором – между двумя соседними во времени отказами (после каждого отказа производится восстановление работоспособного состояния). Математическое ожидание случайной наработки Т

    (1.1)является характеристикой безотказности и называется средней наработкой на отказ (между отказами). В (1.1) через t обозначено текущее значение наработки, а f(t ) плотность вероятности ее распределения.

    Вероятность безотказной работы t отказ объекта не возникает:

    . (1.2)

    вероятностью отказа q (t )=Вер(T £ t ) =1 – p (t ) = F (t ). (1.3)

    В (1.2) и (1.3) F(t t частотой отказов:

    .(1.4)Из (1.4) очевидно, что она характеризует скорость уменьшения вероятности безотказной работы во времени.

    Интенсивностью отказов называют условную плотность вероятности возникновения отказа изделия при условии, что к моменту t отказ не возник:
    . (1.5)

    Функции f(t ) и l (t ) измеряются в ч -1 .


    . (1.6)

    t

    (1.7)

    Поток отказов при l (t )=const называется простейшим

    t

    T 0 =1/l , (1.8)т.е. при простейшем потоке отказов средняя наработка Т 0 t = Т 0 , вероятность безотказной работы изделия составляет 1/е. Часто используют характеристику, называемую g - процентной наработкой

    . (1.9)

    3.Вероятность безотказной работы - вероятность того, что в пределах заданной наработкиt отказ объекта не возникает:

    . (1.2)

    Вероятность противоположного события называется вероятностью отказа и до- полняет вероятность безотказной работы до единицы:

    q (t )=Вер(T £ t ) =1 – p (t ) = F (t ). (1.3)

    В (1.2) и (1.3) F(t ) есть интегральная функция распределение случайной наработки t. Плотность вероятности f(t ) также является показателем надежности, называемым частотой отказов:

    Из (1.4) очевидно, что она характеризует скорость уменьшения вероятности безотказной работы во времени.

    4. Интенсивностью отказов называют условную плотность вероятности возникновения отказа изделия при условии, что к моменту t отказ не возник:

    . (1.5)

    Функции f(t ) и l (t ) измеряются в ч -1 .

    Интегрируя (1.5), легко получить:

    . (1.6)

    Это выражение, называемое основным законом надежности, позволяет установить временное изменение вероятности безотказной работы при любом характере изменения интенсивности отказов во времени. В частном случае постоянства интенсивности отказов l (t ) =l = const (1.6) переходит в известное в теории вероятностей экспоненциальное распределение:

    (1.7)

    Поток отказов при l (t )=const называется простейшим и именно он реализуется для большинства РЭС в течении периода нормальной эксплуатации от окончания приработки до начала старения и износа.

    Подставив выражение плотности вероятности f(t ) экспоненциального распределения (1.7) в (1.1), получим:

    T 0 =1/l , (1.8)

    т.е. при простейшем потоке отказов средняя наработка Т 0 обратна интенсивности отказов l. С помощью (1.7) можно показать, что за время средней наработки, t = Т 0 , вероятность безотказной работы изделия составляет 1/е.

    5. Часто используют характеристику, называемую g - процентной наработкой - время, в течении которого отказ не наступит с вероятностью g (%):

    . (1.9)

    Выбор параметра для количественной оценки надежности определяется назначением, режимами работы изделия, удобством применения в расчетах на стадии проектирования.

    "

    Предварительные замечания

    В основу перечня положен ГОСТ 27.002-89 "Надежность в технике. Основные понятия. Термины и определения", формулирующий применяемые в науке и технике термины и определения в области надежности. Однако не все термины охватываются указанным ГОСТом, поэтому в отдельных пунктах введены дополнительные термины, отмеченные "звездочкой" (*).

    Объект, элемент, система

    В теории надежности используют понятия объект, элемент, система.

    Объект - техническое изделие определенного целевого назначения, рассматриваемое в периоды проектирования, производства, испытаний и эксплуатации.

    Объектами могут быть различные системы и их элементы, в частности: сооружения, установки, технические изделия, устройства, машины, аппараты, приборы и их части, агрегаты и отдельные детали.
    Элемент системы - объект, представляющий отдельную часть системы. Само понятие элемента условно и относительно, так как любой элемент, в свою очередь, всегда можно рассматривать как совокупность других элементов.

    Понятия система и элемент выражены друг через друга, поскольку одно из них следовало бы принять в качестве исходного, постулировать. Понятия эти относительны: объект, считавшийся системой в одном исследовании, может рассматриваться как элемент, если изучается объект большего масштаба. Кроме того, само деление системы на элементы зависит от характера рассмотрения (функциональные, конструктивные, схемные или оперативные элементы), от требуемой точности проводимого исследования, от уровня наших представлений, от объекта в целом.

    Человек -оператор также представляет собой одно из звеньев системы человек-машина.

    Система - объект, представляющий собой совокупность элементов, связанных между собой определенными отношениями и взаимодействующих таким образом, чтобы обеспечить выполнение системой некоторой достаточно сложной функции.

    Признаком системности является структурированность системы, взаимосвязанность составляющих ее частей, подчиненность организации всей системы определенной цели. Системы функционируют в пространстве и времени.

    Состояние объекта

    Исправность - состояние объекта, при котором он соответствует всем требованиям, установленным нормативно-технической документацией (НТД).

    Неисправность - состояние объекта, при котором он не соответствует хотя бы одному из требований, установленных НТД.

    Работоспособность - состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения основных параметров в пределах, установленных НТД.

    Основные параметры характеризуют функционирование объекта при выполнении поставленных задач и устанавливаются в нормативно-технической документации.

    Неработоспособность - состояние объекта, при котором значение хотя бы одного заданного параметра характеризующего способность выполнять заданные функции, не соответствует требованиям, установленным НТД.

    Понятие исправность шире, чем понятие работоспособность. Работоспособный объект в отличие от исправного удовлетворяет лишь тем требованиям НТД, которые обеспечивают его нормальное функционирование при выполнении поставленных задач.

    Работоспособность и неработоспособность в общем случае могут быть полными или частичными. Полностью работоспособный объект обеспечивает в определенных условиях максимальную эффективность его применения. Эффективность применения в этих же условиях частично работоспособного объекта меньше максимально возможной, но значения ее показателей при этом еще находятся в пределах, установленных для такого функционирования, которое считается нормальным. Частично неработоспособный объект может функционировать, но уровень эффективности при этом ниже допускаемого. Полностью неработоспособный объект применять по назначению невозможно.
    Понятия частичной работоспособности и частичной неработоспособности применяют главным образом к сложным системам, для которых характерна возможность нахождения в нескольких состояниях. Эти состояния различаются уровнями эффективности функционирования системы. Работоспособность и неработоспособность некоторых объектов могут быть полными, т.е. они могут иметь только два состояния.
    Работоспособный объект в отличие от исправного обязан удовлетворять лишь тем требованиям НТД, выполнение которых обеспечивает нормальное применение объекта по назначению. При этом он может не удовлетворять, например, эстетическим требованиям, если ухудшение внешнего вида объекта не препятствует его нормальному (эффективному) функционированию.

    Очевидно, что работоспособный объект может быть неисправным, однако отклонения от требований НТД при этом не настолько существенны, чтобы нарушалось нормальное функционирование.
    Предельное состояние - состояние объекта, при котором его дальнейшее применение по назначению должно быть прекращено из-за неустранимого нарушения требований безопасности или неустранимого отклонения заданных параметров за установленные пределы, недопустимого увеличения эксплуатационных расходов или необходимости проведения капитального ремонта.

    Признаки (критерии) предельного состояния устанавливаются НТД на данный объект.

    Невосстанавливаемый объект достигает предельного состояния при возникновении отказа или при достижении заранее установленного предельно допустимого значения срока службы или суммарной наработки, устанавливаемых из соображений безопасности эксплуатации в связи с необратимым снижением эффективности использования ниже допустимой или в связи с увеличением интенсивности отказов, закономерным для объектов данного типа после установленного периода эксплуатации.
    Для восстанавливаемых объектов переход в предельное состояние определяется наступлением момента, когда дальнейшая эксплуатация невозможна или нецелесообразна вследствие следующих причин:
    - становится невозможным поддержание его безопасности, безотказности или эффективности на минимально допустимом уровне;
    - в результате изнашивания и (или) старения объект пришел в такое состояние, при котором ремонт требует недопустимо больших затрат или не обеспечивает необходимой степени восстановления исправности или ресурса.

    Для некоторых восстанавливаемых объектов предельным состоянием считается такое, когда необходимое восстановление исправности может быть осуществлено только с помощью капитального ремонта.
    Режимная управляемость* - свойство объекта поддерживать нормальный режим посредством управления с целью сохранения или восстановления нормального режима его работы.

    Переход объекта в различные состояния

    Повреждение - событие, заключающееся в нарушении исправности объекта при сохранении его работоспособности.

    Отказ - событие, заключающееся в нарушении работоспособности объекта.

    Критерий отказа - отличительный признак или совокупность признаков, согласно которым устанавливается факт отказа.

    Признаки (критерии) отказов устанавливаются НТД на данный объект.
    Восстановление - процесс обнаружения и устранения отказа (повреждения) с целью восстановления его работоспособности (исправности).

    Восстанавливаемый объект - объект, работоспособность которого в случае возникновения отказа подлежит восстановлению в рассматриваемых условиях.

    Невосстанавливаемый объект - объект, работоспособность которого в случае возникновения отказа не подлежит восстановлению в рассматриваемых условиях.

    При анализе надежности, особенно при выборе показателей надежности объекта, существенное значение имеет решение, которое должно быть принято в случае отказа объекта. Если в рассматриваемой ситуации восстановление работоспособности данного объекта при его отказе по каким-либо причинам признается нецелесообразным или неосуществимым (например, из-за невозможности прерывания выполняемой функции), то такой объект в данной ситуации является невосстанавливаемым. Таким образом, один и тот же объект в зависимости от особенностей или этапов эксплуатации может считаться восстанавливаемым или невосстанавливаемым. Например, аппаратура метеоспутника на этапе хранения относится к восстанавливаемой, а во время полета в космосе - невосстанавливаемой. Более того, даже один и тот же объект можно отнести к тому или иному типу в зависимости от назначения: ЭВМ, используемая для неоперативных вычислений, является объектом восстанавливаемым, так как в случае отказа любая операция может быть повторена, а та же ЭВМ, управляющая сложным технологическим процессом в химии, является объектом невосстанавливаемым, так как отказ или сбой приводит к непоправимым последствиям.
    Авария* - событие, заключающееся в переходе объекта с одного уровня работоспособности или относительного уровня функционирования на другой, существенно более низкий, с крупным нарушением режима работы объекта. Авария может привести к частичному или полному разрушению объекта, созданию опасных условий для человека и окружающей среды.

    Временные характеристики объекта

    Наработка - продолжительность или объем работы объекта. Объект может работать непрерывно или с перерывами. Во втором случае учитывается суммарная наработка. Наработка может измеряться в единицах времени, циклах, единицах выработки и др. единицах. В процессе эксплуатации различают суточную, месячную наработку, наработку до первого отказа, наработку между отказами, заданную наработку и т.д.
    Если объект эксплуатируется в различных режимах нагрузки, то, например, наработка в облегченном режиме может быть выделена и учитываться отдельно от наработки при номинальной нагрузке.

    Технический ресурс - наработка объекта от начала его эксплуатации до достижения предельного состояния.

    Обычно указывается, какой именно технический ресурс имеется в виду: до среднего, капитального, от капитального до ближайшего среднего и т.п. Если конкретного указания не содержится, то имеется в виду ресурс от начала эксплуатации до достижения предельного состояния после всех (средних и капитальных) ремонтов, т.е. до списания по техническому состоянию.

    Срок службы - календарная продолжительность эксплуатации объекта от ее начала или возобновления после капитального или среднего ремонта до наступления предельного состояния.

    Под эксплуатацией объекта понимается стадия его существования в распоряжении потребителя при условии применения объекта по назначению, что может чередоваться с хранением, транспортированием, техническим обслуживанием и ремонтом, если это осуществляется потребителем.

    Срок сохраняемости - календарная продолжительность хранения и (или) транспортирования объекта в заданных условиях, в течение и после которой сохраняются значения установленных показателей (в том числе и показателей надежности) в заданных пределах.

    Определение надежности
    Работа любой технической системы может характеризоваться ее эффективностью (рис. 4.1.1), под которой понимается совокупность свойств, определяющих способность системы выполнять при ее создании определенные задачи.

    Рис. 4.1.1. Основные свойства технических систем

    В соответствии с ГОСТ 27.002-89 под надежностью понимают свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки.

    Таким образом:
    1. Надежность - свойство объекта сохранять во времени способность выполнять требуемые функции. Например: для электродвигателя - обеспечивать требуемые момент на валу и скорость; для системы электроснабжения - обеспечивать электроприемники энергией требуемого качества.

    2. Выполнение требуемых функций должно происходить при значениях параметров в установленных пределах. Например: для электродвигателя - обеспечивать требуемые момент и скорость при температуре двигателя, не превышающей определенного предела, отсутствии выделения источника взрыва, пожара и т.д.

    3. Способность выполнять требуемые функции должна сохраняться в заданных режимах (например, в повторно-кратковременном режиме работы); в заданных условиях (например, в условиях запыленности, вибрации и т.д.).

    4. Объект должен обладать свойством сохранять способность выполнять требуемые функции в различные фазы его жизни: при рабочей эксплуатации, техническом обслуживании, ремонте, хранении и транспортировке.

    Надежность - важный показатель качества объекта. Его нельзя ни противопоставлять, ни смешивать с другими показателями качества. Явно недостаточной, например, будет информация о качестве очистительной установки, если известно только то, что она обладает определенной производительностью и некоторым коэффициентом очистки, но неизвестно, насколько устойчиво сохраняются эти характеристики при ее работе. Бесполезна также информация о том, что установка устойчиво сохраняет присущие ей характеристики, но неизвестны значения этих характеристик. Вот почему в определение понятия надежности входит выполнение заданных функций и сохранение этого свойства при использовании объекта по назначению.

    В зависимости от назначения объекта оно может включать в себя в различных сочетаниях безотказность, долговечность, ремонтопригодность, сохраняемость. Например, для невосстанавливаемого объекта, не предназначенного для хранения, надежность определяется его безотказностью при использовании по назначению. Информация о безотказности восстанавливаемого изделия, длительное время находящегося в состоянии хранения и транспортировки, не в полной мере определяет его надежность (при этом необходимо знать и о ремонтопригодности, и сохраняемости). В ряде случаев очень важное значение приобретает свойство изделия сохранять работоспособность до наступления предельного состояния (снятие с эксплуатации, передача в средний или капитальный ремонт), т.е. необходима информация не только о безотказности объекта, но и о его долговечности.

    Техническая характеристика, количественным образом определяющая одно или несколько свойств, составляющих надежность объекта именуется показатель надежности. Он количественно характеризует, в какой степени данному объекту или данной группе объектов присущи определенные свойства, обусловливающие надежность. Показатель надежности может иметь размерность (например, среднее время восстановления) или не иметь ее (например, вероятность безотказной работы).

    Надежность в общем случае - комплексное свойство, включающее такие понятия, как безотказность, долговечность, ремонтопригодность, сохраняемость. Для конкретных объектов и условий их эксплуатации эти свойства могут иметь различную относительную значимость.

    Безотказность - свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

    Ремонтопригодность - свойство объекта быть приспособленным к предупреждению и обнаружению отказов и повреждений, к восстановлению работоспособности и исправности в процессе технического обслуживания и ремонта.

    Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния с необходимым прерыванием для технического обслуживания и ремонтов.

    Сохраняемость - свойство объекта непрерывно сохранять исправное и работоспособное состояние в течение (и после) хранения и (или) транспортировки.

    Для показателей надежности используются две формы представления: вероятностная и статистическая. Вероятностная форма обычно бывает удобнее при априорных аналитических расчетах надежности, статистическая - при экспериментальном исследовании надежности технических систем. Кроме того, оказывается, что одни показатели лучше интерпретируются в вероятностных терминах, а другие - в статистических.

    Показатели безотказности и ремонтопригодности
    Наработка до отказа - вероятность того, что в пределах заданной наработки отказ объекта не возникнет (при условии работоспособности в начальный момент времени).
    Для режимов хранения и транспортировки может применяться аналогично определяемый термин "вероятность возникновения отказа".

    Средняя наработка до отказа - математическое ожидание случайной наработки объекта до первого отказа.
    Средняя наработка между отказами - математическое ожидание случайной наработки объекта между отказами.

    Обычно этот показатель относится к установившемуся процессу эксплуатации. В принципе средняя наработка между отказами объектов, состоящих из стареющих во времени элементов, зависит от номера предыдущего отказа. Однако с ростом номера отказа (т.е. с увеличением длительности эксплуатации) эта величина стремится к некоторой постоянной, или, как говорят, к своему стационарному значению.
    Средняя наработка на отказ - отношение наработки восстанавливаемого объекта за некоторый период времени к математическому ожиданию числа отказов в течение этой наработки.

    Этим термином можно назвать кратко среднюю наработку до отказа и среднюю наработку между отказами, когда оба показателя совпадают. Для совпадения последних необходимо, чтобы после каждого отказа объект восстанавливался до первоначального состояния.

    Заданная наработка - наработка, в течение которой объект должен безотказно работать для выполнения своих функций.

    Среднее время простоя - математическое ожидание случайного времени вынужденного нерегламентированного пребывания объекта в состоянии неработоспособности.

    Среднее время восстановления - математическое ожидание случайной продолжительности восстановления работоспособности (собственно ремонта).

    Вероятность восстановления - вероятность того, что фактическая продолжительность восстановления работоспособности объекта не превысит заданной.

    Показатель технической эффективности функционирования - мера качества собственно функционирования объекта или целесообразности использования объекта для выполнения заданных функций.
    Этот показатель определяется количественно как математическое ожидание выходного эффекта объекта, т.е. в зависимости от назначения системы принимает конкретное выражение. Часто показатель эффективности функционирования определяется как полная вероятность выполнения объектом задачи с учетом возможного снижения качества его работы из-за возникновения частичных отказов.

    Коэффициент сохранения эффективности - показатель, характеризующий влияние степени надежности к максимально возможному значению этого показателя (т.е. соответствующему состоянию полной работоспособности всех элементов объекта).

    Нестационарный коэффициент готовности - вероятность того, что объект окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного момента времени), для которого известно начальное состояние этого объекта.

    Средний коэффициент готовности - усредненное на заданном интервале времени значение нестационарного коэффициента готовности.

    Стационарный коэффициент готовности (коэффициент готовности) - вероятность того, что восстанавливаемый объект окажется работоспособным в произвольно выбранный момент времени в установившемся процессе эксплуатации. (Коэффициент готовности может быть определен и как отношение времени, в течение которого объект находится в работоспособном состоянии, к общей длительности рассматриваемого периода. Предполагается, что рассматривается установившийся процесс эксплуатации, математической моделью которого является стационарный случайный процесс. Коэффициент готовности является предельным значением, к которому стремятся и нестационарный, и средний коэффициенты готовности с ростом рассматриваемого интервала времени.

    Часто используются показатели, характеризующие простой объект, - так называемые коэффициенты простоя соответствующего типа. Каждому коэффициенту готовности можно поставить в соответствие определенный коэффициент простоя, численно равный дополнению соответствующего коэффициента готовности до единицы. В соответствующих определениях работоспособность следует заменить на неработоспособность.

    Нестационарный коэффициент оперативной готовности - вероятность того, что объект, находясь в режиме ожидания, окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного времени), и начиная с этого момента времени будет работать безотказно в течение заданного времени.

    Средний коэффициент оперативной готовности - усредненное на заданном интервале значение нестационарного коэффициента оперативной готовности.

    Стационарный коэффициент оперативной готовности (коэффициент оперативной готовности) - вероятность того, что восстанавливаемый элемент окажется работоспособным в произвольный момент времени, и с этого момента времени будет работать безотказно в течение заданного интервала времени.
    Предполагается, что рассматривается установившийся процесс эксплуатации, которому соответствуют в качестве математической модели стационарный случайный процесс.

    Коэффициент технического использования - отношение средней наработки объекта в единицах времени за некоторый период эксплуатации к сумме средних значений наработки, времени простоя, обусловленного техническим обслуживанием, и времени ремонтов за тот же период эксплуатации.

    Интенсивность отказов - условная плотность вероятности отказа невосстанавливаемого объекта, определяемая для рассматриваемого момента времени при условии, что до этого момента отказ не возник.
    Параметр потока отказов - плотность вероятности возникновения отказа восстанавливаемого объекта, определяемая для рассматриваемого момента времени.

    Параметр потока отказа может быть определен как отношение числа отказов объекта за определенный интервал времени к длительности этого интервала при ординарном потоке отказов.

    Интенсивность восстановления - условная плотность вероятности восстановления работоспособности объекта, определенная для рассматриваемого момента времени, при условии, что до этого момента восстановление не было завершено.

    Показатели долговечности и сохраняемости

    Гамма-процентный ресурс - наработка, в течение которой объект не достигает предельного состояния с заданной вероятностью 1- ?.

    Средний ресурс - математическое ожидание ресурса.

    Назначенный ресурс - суммарная наработка объекта, при достижении которой эксплуатация должна быть прекращена независимо от его состояния.

    Средний ремонтный ресурс - средний ресурс между смежными капитальными ремонтами объекта.

    Средний ресурс до списания - средний ресурс объекта от начала эксплуатации до его списания.

    Средний ресурс до капитального ремонта средний ресурс от начала эксплуатации объекта до его первого капитального ремонта.

    Гамма-процентный срок службы - срок службы, в течение которого объект не достигает предельного состояния с вероятностью 1- ?.

    Средний срок службы - математическое ожидание срока службы.

    Средний межремонтный срок службы - средний срок службы между смежными капитальными ремонтами объекта.

    Средний срок службы до капитального ремонта - средний срок службы от начала эксплуатации объекта до его первого капитального ремонта.

    Средний срок службы до списания - средний срок службы от начала эксплуатации объекта до его списания.

    Гамма-процентный срок сохраняемости - продолжительность хранения, в течение которой у объекта сохраняются установленные показатели с заданной вероятностью 1- ?.

    Средний срок сохраняемости - математическое ожидание срока сохраняемости.

    Виды надежности

    Многоцелевое назначение оборудования и систем приводит к необходимости исследовать те или другие стороны надежности с учетом причин, формирующих надежностные свойства объектов. Это приводит к необходимости подразделения надежности на виды.

    Различают:
    - аппаратурную надежность, обусловленную состоянием аппаратов; в свою очередь она может подразделяться на надежность конструктивную, схемную, производственно-технологическую;
    - функциональную надежность, связанную с выполнением некоторой функции (либо комплекса функций), возлагаемых на объект, систему;
    - эксплуатационную надежность, обусловленную качеством использования и обслуживания;
    - программную надежность, обусловленную качеством программного обеспечения (программ, алгоритмов действий, инструкций и т.д.);
    - надежность системы "человек-машина", зависящую от качества обслуживания объекта человеком-оператором.

    Характеристики отказов

    Одним из основных понятий теории надежности является понятие отказа (объекта, элемента, системы).
    Отказ объекта - событие, заключающееся в том, что объект полностью или частично перестает выполнять заданные функции. При полной потере работоспособности возникает полный отказ, при частичной - частичный. Понятия полного и частичного отказов каждый раз должны быть четко сформулированы перед анализом надежности, поскольку от этого зависит количественная оценка надежности.

    По причинам возникновения отказов в данном месте различают:
    отказы из-за конструктивных дефектов;
    отказы из-за технологических дефектов;
    отказы из-за эксплуатационных дефектов;
    отказы из-за постепенного старения (износа).
    Отказы вследствие конструктивных дефектов возникают как следствие несовершенства конструкции из-за "промахов" при конструировании. В этом случае наиболее распространенными являются недоучет "пиковых" нагрузок, применение материалов с низкими потребительскими свойствами, схемные "промахи" и др. Отказы этой группы сказываются на всех экземплярах изделия, объекта, системы.
    Отказы из-за технологических дефектов возникают как следствие нарушения принятой технологии изготовления изделий (например, выход отдельных характеристик за установленные пределы). Отказы этой группы характерны для отдельных партий изделий, при изготовлении которых наблюдались нарушения технологии изготовления.

    Отказы из-за эксплуатационных дефектов возникают по причине несоответствия требуемых условий эксплуатации, правил обслуживания действительным. Отказы этой группы характерны для отдельных экземпляров изделий.

    Отказы из-за постепенного старения (износа) вследствие накопления необратимых изменений в материалах, приводящих к нарушению прочности (механической, электрической), взаимодействия частей объекта.

    Отказы по причинным схемам возникновения подразделяются на следующие группы:
    отказы с мгновенной схемой возникновения;
    отказы с постепенной схемой возникновения;
    отказы с релаксационной схемой возникновения;
    отказы с комбинированными схемами возникновения.
    Отказы с мгновенной схемой возникновения характеризуются тем, что время наступления отказа не зависит от времени предшествующей эксплуатации и состояния объекта, момент отказа наступает случайно, внезапно. Примерами реализации такой схемы могут служить отказы изделий под действием пиковых нагрузок в электрической сети, механическое разрушение посторонним внешним воздействием и т.п.
    Отказы с постепенной схемой возникновения происходят за счет постепенного накопления вследствие физико-химических изменений в материалах повреждений. При этом значения некоторых "решающих" параметров выходят за допустимые границы и объект (система) не способен выполнять заданные функции. Примерами реализации постепенной схемы возникновения могут служить отказы вследствие снижения сопротивления изоляции, электрической эрозии контактов и т.п.

    Отказы с релаксационной схемой возникновения характеризуются первоначальным постепенным накоплением повреждений, которые создают условия для скачкообразного (резкого) изменения состояния объекта, после которого возникает отказное состояние. Примерами реализации релаксационной схемы возникновения отказов могут служить пробой изоляции кабеля вследствие коррозионного разрушения брони.

    Отказы с комбинированными схемами возникновения характерны для ситуаций, когда одновременно действуют несколько причинных схем. Примером, реализующим эту схему, может служить отказ двигателя в результате короткого замыкания по причинам снижения сопротивления изоляции обмоток и перегрева.
    При анализе надежности необходимо выявлять преобладающие причины отказов и лишь затем, если в этом есть необходимость, учитывать влияние остальных причин.

    По временному аспекту и степени предсказуемости отказы подразделяются на внезапные и постепенные.
    По характеру устранения с течением времени различают устойчивые (окончательные) и самоустраняющиеся (кратковременные) отказы. Кратковременный отказ называется сбоем. Характерный признак сбоя - то, что восстановление работоспособности после его возникновения не требует ремонта аппаратуры. Примером может служить кратковременно действующая помеха при приеме сигнала, дефекты программы и т.п.
    Для целей анализа и исследования надежности причинные схемы отказов можно представить в виде статистических моделей, которые вследствие вероятностного возникновения повреждений описываются вероятностными законами.

    Виды отказов и причинные связи

    Отказы элементов систем являются основными предметами исследования при анализе причинных связей.
    Как показано во внутреннем кольце (рис.4.1.2), расположенном вокруг "отказа элементов", отказы могут возникать в результате:
    1) первичных отказов;
    2) вторичных отказов;
    3) ошибочных команд (инициированные отказы).

    Отказы всех этих категорий могут иметь различные причины, приведенные в наружном кольце. Когда точный вид отказов определен и данные по ним получены, а конечное событие является критическим, то они рассматриваются как исходные отказы.

    Первичный отказ элемента определяют как нерабочее состояние этого элемента, причиной которого является он сам, и необходимо выполнить ремонтные работы для возвращения элемента в рабочее состояние. Первичные отказы происходят при входных воздействиях, значение которых находится в пределах, лежащих в расчетном диапазоне, а отказы объясняются естественным старением элементов. Разрыв резервуара вследствие старения (усталости) материала служит примером первичного отказа.
    Вторичный отказ - такой же, как первичный, за исключением того, что сам элемент не является причиной отказа. Вторичные отказы объясняются воздействием предыдущих или текущих избыточных напряжений на элементы. Амплитуда, частота, продолжительность действия этих напряжений могут выходить за пределы допусков или иметь обратную полярность и вызываются различными источниками энергии: термической, механической, электрической, химической, магнитной, радиоактивной и т.п. Эти напряжения вызываются соседними элементами или окружающей средой, например - метеорологическими (ливень, ветровая нагрузка), геологическими условиями (оползни, просадка грунтов), а также воздействием со стороны других технических систем.

    Рис. 4.1.2. Характеристики отказов элементов

    Примером вторичных отказов служит "срабатывание предохранителя от повышенного электрического тока", "повреждение емкостей для хранения при землетрясении". Следует отметить, что устранение источников повышенных напряжений не гарантирует возвращение элемента в рабочее состояние, так как предыдущая перегрузка могла вызвать необратимое повреждение в элементе, требующее в этом случае ремонта.
    Инициированные отказы (ошибочные команды). Люди, например, операторы и обслуживающий технический персонал, также являются возможными источниками вторичных отказов, если их действия приводят к выходу элементов из строя. Ошибочные команды представляются в виде элемента, находящегося в нерабочем состоянии из-за неправильного сигнала управления или помех (при этом лишь иногда требуется ремонт для возвращения данного элемента в рабочее состояние). Самопроизвольные сигналы управления или помехи часто не оставляют последствий (повреждений), и в нормальных последующих режимах элементы работают в соответствии с заданными требованиями. Типичными примерами ошибочных команд являются: "напряжение приложено самопроизвольно к обмотке реле", "переключатель случайно не разомкнулся из-за помех", "помехи на входе контрольного прибора в системе безопасности вызвали ложный сигнал на остановку", "оператор не нажал на аварийную кнопку" (ошибочная команда от аварийной кнопки).

    Множественный отказ (отказы общего характера) есть событие, при котором несколько элементов выходят из строя по одной и той же причине. К числу таких причин могут быть отнесены следующие:
    - конструкторские недоработки оборудования (дефекты, не выявленные на стадии проектирования и приводящие к отказам вследствие взаимной зависимости между электрическими и механическими подсистемами или элементами избыточной системы);
    - ошибки эксплуатации и технического обслуживания (неправильная регулировка или калибровка, небрежность оператора, неправильное обращение и т. п.);
    - воздействие окружающей среды (влага, пыль, грязь, температура, вибрация, а также экстремальные режимы нормальной эксплуатации);
    - внешние катастрофические воздействия (естественные внешние явления, такие, как наводнение, землетрясение, пожар, ураган);
    - общий изготовитель (резервируемое оборудование или его компоненты, поставляемые одним и тем же изготовителем, могут иметь общие конструктивные или производственные дефекты. Например, производственные дефекты могут быть вызваны неправильным выбором материала, ошибками в системах монтажа, некачественной пайкой и т. п.);
    - общий внешний источник питания (общий источник питания для основного и резервного оборудования, резервируемых подсистем и элементов);
    - неправильное функционирование (неверно выбранный комплекс измерительных приборов или неудовлетворительно спланированные меры защиты).

    Известен целый ряд примеров множественных отказов: так, некоторые параллельно соединенные пружинные реле выходили из строя одновременно и их отказы были вызваны общей причиной; вследствие неправильного расцепления муфт при техническом обслуживании два клапана оказались установлены в неправильное положение; из-за разрушения паропровода имели место сразу несколько отказов коммутационного щита. В некоторых случаях общая причина вызывает не полный отказ резервированной системы (одновременный отказ нескольких узлов, т.е. предельный случай), а менее серьезное общее понижение надежности, что приводит к повышению вероятности совместного отказа узлов систем. Такое явление наблюдается в случае исключительно неблагоприятных окружающих условий, когда ухудшение характеристик приводит к отказу резервного узла. Наличие общих неблагоприятных внешних условий приводит к тому, что отказ второго узла зависит от отказа первого и спарен с ним.

    Для каждой общей причины необходимо определить все вызываемые ею исходные события. При этом определяют сферу действия каждой общей причины, а также место расположения элементов и время происшествия. Некоторые общие причины имеют лишь ограниченную сферу действия. Например, утечка жидкости может ограничиваться одним помещением, и электрические установки, их элементы в других помещениях не будут повреждены вследствие утечек, если только эти помещения не сообщаются друг с другом.

    Отказ считают по сравнению с другим более критичным, если его предпочтительнее рассматривать в первую очередь при разработке вопросов надежности и безопасности. При сравнительной оценке критичности отказов учитывают последствия отказа, вероятность возникновения, возможность обнаружения, локализации и т.д.

    Указанные выше свойства технических объектов и промышленная безопасность - взаимосвязаны. Так, при неудовлетворительной надежности объекта вряд ли следует ожидать хороших показателей по его безопасности. В то же время, перечисленные свойства имеют свои самостоятельные функции. Если при анализе надежности изучается способность объекта выполнять заданные функции (при определенных условиях эксплуатации) в установленных пределах, то при оценке промышленной безопасности выявляют причинно-следственные связи возникновения и развития аварий и других нарушений с всесторонним анализом последствий этих нарушений.

    Показателями надежности называют количественные характеристики одного или нескольких свойств объекта, составляющих его надежность. Значения показателей надежности получают по результатам испытаний или эксплуатации. По восстанавливаемости изделий показатели надежности подразделяют на показатели невосстанавливаемых изделий и показатели для восстанавливаемых изделий.

    Невосстанавливаемым называют такой элемент, который после работы до первого отказа заменяют на такой же элемент, так как его восстановление в условиях эксплуатации невозможно. В качестве примеров невосстанавливас-мых элементов можно назвать диоды, конденсаторы, триоды, микросхемы, гидроклаианы, пиропатроны и т. п.

    Большинство сложных технических систем с длительными сроками службы являются восстанавливаемыми, т. е. возникающие в процессе эксплуатации отказы систем устраняют при ремонте. Технически исправное состояние изделий в процессе эксплуатации поддерживают проведением профилактических и восстановительных работ.

    Надежность изделий, в зависимости от их назначения, можно оценивать, используя либо часть показателей надежности, либо все показатели.

    Показатели безотказности:

    • - вероятность безотказной работы - вероятность того, что в пределах заданной наработки отказ объекта не возникает;
    • - средняя наработка до отказа - математическое ожидание наработки объекта до первого отказа;
    • - средняя наработка на отказ - отношение суммарной наработки восстанавливаемого объекта к математическому ожиданию числа его отказов в течение этой наработки;
    • - интенсивность отказов - условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник. Этот показатель относится к невосстанавливае-мым изделиям.

    Показатели долговечности. Количественные показатели долговечности восстанавливаемых изделий делятся на две группы.

    • 1) Показатели, связанные со сроком службы изделия:
      • - срок службы - календарная продолжительность эксплуатации от начала эксплуатации объекта или ее возобновление после ремонта до перехода в предельное состояние;
      • - средний срок службы - математическое ожидание срока службы;
      • - срок службы до первого капитального ремонта агрегата или узла - это продолжительность эксплуатации до ремонта, выполняемого для восстановления исправности и полного или близкого к полному восстановления ресурса изделия с заменой или восстановлением любых его частей, включая базовые;
      • - срок службы между капитальными ремонтами, зависящий преимущественно от качества ремонта, т. е. от того, в какой степени восстановлен их ресурс;
      • - суммарный срок службы - эго календарная продолжительность работы технической системы от начала эксплуатации до выбраковки с учетом времени работы после ремонта;
      • - гамма-процентный срок службы - календарная продолжительность эксплуатации, в течение которой объект не достигнет предельного состояния с вероятностью у, выраженной в процентах.
    • 2) Показатели, связанные с ресурсом изделия:
      • - ресурс - суммарная наработка объекта от начала его эксплуатации или ее возобновление после ремонта до перехода в предельное состояние.
      • - средний ресурс - математическое ожидание ресурса; для технических систем в качестве критерия долговечности используют технический ресурс;
      • - назначенный ресурс - суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния;
      • - гамма-процентный ресурс - суммарная наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью у, выраженной в процентах.

    Единицы для измерения ресурса выбирают применительно к каждой отрасли и к каждому классу машин, агрегатов и конструкций отдельно.

    Комплексные показатели надежности. Показателем, определяющим долговечность системы, объекта, машины, может служить коэффициент технического использования.

    Коэффициент технического использования - отношение математического ожидания суммарного времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к математическому ожиданию суммарного времени пребывания объекта в работоспособном состоянии и всех простоев для ремонта и технического обслуживания. Коэффициент технического использования, взятый за период между плановыми ремонтами и техническим обслуживанием, называется коэффициентом готовности, который оценивает непредусмотренные остановки машины и что плановые ремонты и мероприятия по техническому обслуживанию не полностью выполняют свою роль.

    Показателем надежности невосстанавливаемого элемента или всей системы является вероятность безотказной работы P(t) за заданное время / или функция надежности, которая является функцией, обратной функции распределения:

    P(t) = l-F(t) = P(r>t),

    где Р(/) - вероятность отказа элемента до момента /; т - время работы невосстанавливаемого элемента.

    Графически функция надежности представляет собой монотонно убывающую кривую (рис. 6.7); при / = О Р{1 = 0) = 1, при / -«о Р(1 = оо) = 0.

    Рис. 6.7.

    В общем виде вероятность безотказной работы Р(0 испытуемых элементов конструкций определяется как отношение числа элементов оставшихся исправными в конце времени испытания к начальному числу элементов поставленных на испытание:

    />(*) = (ЛГ - „)/#,

    где N - начальное число испытуемых элементов; п - число отказавших элементов за V, N - п = п 0 - число элементов, сохранивших работоспособность.

    Величина P(t) и вероятность появления отказа F(t) в момент времени t связаны соотношением

    P(t) + F(t)-,

    откуда F(t) = l- P(t) или F(t) = -n 0 / N.

    Причина возникновения внезапных отказов не связана с изменением состояния объекта и временем его предыдущей работы, а зависит от уровня внешних воздействий. Внезапные отказы оцениваются интенсивностью отказов А(0 - вероятностью возникновения отказа в единицу времени при условии, что до этого момента времени отказ не возник. В общем виде вероятность безотказной работы можно выразить через интенсивность отказов А.(/):

    P(t) = exp

    Показатель А(0 измеряется числом отказов в единицу времени (ч "). С помощью данного выражения можно получить формулу для вероятности безотказной работы любого элемента технической системы при любом известном распределении времени наработки на отказ. Функция А(/) может быть определена по результатам испытаний. Многочисленные опытные данные показывают, что для многих элементов график функции А(7) имеет «корытообразный» вид (рис. 6.8).


    Рис. 6.8.

    от наработки /

    Анализ графика показывает, что время испытания можно условно разбить на три периода. В первом из них функция А(/) имеет повышенные значения. Это период приработки или период ранних отказов для скрытых дефектов. Второй период называют периодом нормальной работы. Для этого периода характерна постоянная интенсивность отказов. Последний, третий период - это период старения. Так как период нормальной работы является основным, то в расчетах надежности принимается k(t) - const. В этом случае при экспоненциальном законе распределения функция надежности имеет вид:

    P = ехр

    Р(/) = ехр[-(?1, + А. 2

    Одной из важнейших характеристик безотказности системы является среднее время «жизни» объекта, которое вычисляют, используя выражение:

    г 0 =|р(^ = / ех р(-М Л =т-0 0 ^

    Поэтому функцию надежности можно записать и так:

    / 5 (/) = ехр(-/ / Г 0).

    Если время работы элемента мало по сравнению со средним временем «жизни», то можно использовать приближенную формулу:

    Для случая экспоненциального распределения среднее время «жизни» системы равно

    А,] + А, + ... + А. ((

    Пример 6.4. Определить среднее время «жизни» системы за период времени I = 10 ч, если известно, что система состоит из пяти элементов с соответствующими интенсивностями отказов, ч- 1: ^ = 2 10 э; к 2 = 5 10" 5 ; Х, 3 = 10" 5 ; Х, 4 = 20 КГ 5 ; А-5 - 50 10" 5 . Результатами испытаний установлено, что распределение наработки на отказ подчиняется экспоненциальному закону.

    Решение. С учетом экспоненциального закона распределения наработки на отказ определим вероятность безотказной работы:

    /’(?) = ехр «1-(Я, + Я, 2 + А, 3 + А. 4 + Я. 5)г =

    1 -(2 + 5 + 1 + 20 + 50)10“ 5 -10 = 0,992.

    При тех же условиях определяем среднее время «жизни» системы:

    • 1 I А/л I *« I А/
    • 1 1 п
    • 1/(2+ 5 + 1+ 20+ 50)10~ 5 =10 5 /78 = 1282 ч.

    2 НАДЁЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ

    2.1 Основные понятия надёжности. Классификация отказов. Составляющие надёжности

    Термины и определения, используемые в теории надёжности, регламентированы ГОСТ 27.002-89 «Надёжность в технике. Основные понятия. Термины и определения».

    2.1.1 Основные понятия

    Надёжность объекта характеризуется следующими основными состояниями и событиями .

    Исправность – состояние объекта, при котором он соответствует всем требованиям, установленным нормативно-технической документацией (НТД).

    Работоспособность – состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения основных параметров, установленных НТД.

    Основные параметры характеризуют функционирование объекта при выполнении поставленных задач.

    Понятие исправность шире, чем понятие работоспособность . Работоспособный объект обязан удовлетворять лишь тем требования НТД, выполнение которых обеспечивает нормальное применение объекта по назначению. Таким образом, если объект неработоспособен, то это свидетельствует о его неисправности. С другой стороны, если объект неисправен, то это не означает, что он неработоспособен.

    Предельное состояние – состояние объекта, при котором его применение по назначению недопустимо или нецелесообразно.

    Применение (использование) объекта по назначению прекращается в следующих случаях:

    · при неустранимом нарушении безопасности;

    · при неустранимом отклонении величин заданных параметров;

    · при недопустимом увеличении эксплуатационных расходов.

    Для некоторых объектов предельное состояние является последним в его функционировании, т.е. объект снимается с эксплуатации, для других – определенной фазой в эксплуатационном графике, требующей проведения ремонтно-восстановительных работ.

    В связи с этим, объекты могут быть:

    · невосстанавливаемые , для которых работоспособность в случае возникновения отказа, не подлежит восстановлению;

    · восстанавливаемые , работоспособность которых может быть восстановлена, в том числе и путем замены.

    К числу невосстанавливаемых объектов можно отнести, например: подшипники качения, полупроводниковые изделия, зубчатые колеса и т.п. Объекты, состоящие из многих элементов, например, станок, автомобиль, электронная аппаратура, являются восстанавливаемыми, поскольку их отказы связаны с повреждениями одного или немногих элементов, которые могут быть заменены.

    В ряде случаев один и тот же объект в зависимости от особенностей, этапов эксплуатации или назначения может считаться восстанавливаемым или невосстанавливаемым.

    Отказ – событие, заключающееся в нарушении работоспособного состояния объекта.

    Критерий отказа – отличительный признак или совокупность признаков, согласно которым устанавливается факт возникновения отказа.

    2.1.2 Классификация и характеристики отказов

    По типу отказы подразделяются на:

    · отказы функционирования (выполнение основных функций объектом прекращается, например, поломка зубьев шестерни);

    · отказы параметрические (некоторые параметры объекта изменяются в недопустимых пределах, например, потеря точности станка).

    По своей природе отказы могут быть:

    · случайные, обусловленные непредусмотренными перегрузками, дефектами материала, ошибками персонала или сбоями системы управления и т. п.;

    · систематические, обусловленные закономерными и неизбежными явлениями, вызывающими постепенное накопление повреждений: усталость, износ, старение, коррозия и т. п.

    Отказы элементов систем могут возникать в результате (рис. 2.1):

    1) первичных отказов;

    2) вторичных отказов;

    3) ошибочных команд (инициированные отказы).

    (усталости) материала служит примером первичного отказа.

    Отказы всех этих категорий могут иметь различные причины, приведенные в наружном кольце. Когда точный вид отказов определен и данные по ним получены, а конечное событие является критическим, то они рассматриваются как исходные отказы.

    Первичный отказ элемента определяют как нерабочее состояние этого элемента, причиной которого является он сам, и необходимо выполнить ремонтные работы для возвращения элемента в рабочее состояние. Первичные отказы происходят при входных воздействиях, значение которых находится в пределах, лежащих в расчетном диапазоне, а отказы объясняются естественным старением элементов. Разрыв резервуара вследствие старения

    Вторичный отказ - такой же, как первичный, за исключением того, что сам элемент не является причиной отказа. Вторичные отказы объясняются воздействием предыдущих или текущих избыточных напряжений на элементы. Амплитуда, частота, продолжительность действия этих напряжений могут выходить за пределы допусков или иметь обратную полярность и вызываются различными источниками энергии: термической, механической, электрической, химической, магнитной, радиоактивной и т.п. Эти напряжения вызываются соседними элементами или окружающей средой, например - метеорологическими (ливень, ветровая нагрузка), геологическими условиями (оползни, просадка грунтов), а также воздействием со стороны других технических систем.

    Примером вторичных отказов служит "срабатывание предохранителя от повышенного электрического тока", "повреждение емкостей для хранения при землетрясении". Следует отметить, что устранение источников повышенных напряжений не гарантирует возвращение элемента в рабочее состояние, так как предыдущая перегрузка могла вызвать необратимое повреждение в элементе, требующее в этом случае ремонта.

    Инициированные отказы (ошибочные команды). Люди, например, операторы и обслуживающий технический персонал, также являются возможными источниками вторичных отказов, если их действия приводят к выходу элементов из строя. Ошибочные команды представляются в виде элемента, находящегося в нерабочем состоянии из-за неправильного сигнала управления или помех (при этом лишь иногда требуется ремонт для возвращения данного элемента в рабочее состояние). Самопроизвольные сигналы управления или помехи часто не оставляют последствий (повреждений), и в нормальных последующих режимах элементы работают в соответствии с заданными требованиями. Типичными примерами ошибочных команд являются: "напряжение приложено самопроизвольно к обмотке реле", "переключатель случайно не разомкнулся из-за помех", "помехи на входе контрольного прибора в системе безопасности вызвали ложный сигнал на остановку", "оператор не нажал на аварийную кнопку" (ошибочная команда от аварийной кнопки).

    Основные признаки классификации отказов:

    Таблица 2.1

    характер возникновения:

    · внезапный отказ – отказ, проявляющийся в резком (мгновенном) изменении характеристик объекта;

    · постепенный отказ – отказ, происходящий в результате медленного, постепенного ухудшения качества объекта.

    Внезапные отказы обычно проявляются в виде механических повреждений элементов (трещины – хрупкое разрушение, пробои изоляции, обрывы и т. п.) и не сопровождаются предварительными видимыми признаками их приближения. Внезапный отказ характеризуется независимостью момента наступления от времени предыдущей работы.

    Постепенные отказы - связаны с износом деталей и старением материалов.

    причина возникновения:

    · конструкционный отказ, вызванный недостатками и неудачной конструкцией объекта;

    · производственный отказ, связанный с ошибками при изготовлении объекта по причине несовершенства или нарушения технологии;

    · эксплуатационный отказ, вызванный нарушением правил эксплуатации.

    характер устранения:

    · устойчивый отказ;

    · перемежающийся отказ (возникающий/исчезающий). последствия отказа: легкий отказ (легкоустранимый);

    · средний отказ (не вызывающий отказы смежных узлов – вторичные отказы);

    · тяжелый отказ (вызывающий вторичные отказы или приводящий к угрозе жизни и здоровью человека).

    дальнейшее использование объекта:

    · полные отказы, исключающие возможность работы объекта до их устранения;

    · частичные отказы, при которых объект может частично использоваться.

    легкость обнаружения:

    · очевидные (явные) отказы;

    · скрытые (неявные) отказы.

    время возникновения:

    · приработочные отказы, возникающие в начальный период эксплуатации;

    · отказы при нормальной эксплуатации;

    · износовые отказы, вызванные необратимыми процессами износа деталей, старения материалов и пр.

    2.1.3 Составляющие надёжности

    В соответствии с ГОСТ 27.002-89 под надёжностью понимают свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки .

    Таким образом:

    1. Надёжность - свойство объекта сохранять во времени способность выполнять требуемые функции. Например: для электродвигателя - обеспечивать требуемые момент на валу и скорость; для системы электроснабжения - обеспечивать электроприемники энергией требуемого качества.

    2. Выполнение требуемых функций должно происходить при значениях параметров в установленных пределах . Например: для электродвигателя - обеспечивать требуемые момент и скорость при температуре двигателя, не превышающей определенного предела, отсутствии выделения источника взрыва, пожара и т.д.

    3. Способность выполнять требуемые функции должна сохраняться в заданных режимах (например, в повторно-кратковременном режиме работы); в заданных условиях (например, в условиях запыленности, вибрации и т.д.).

    4. Объект должен обладать свойством сохранять способность выполнять требуемые функции в различные фазы его жизни: при рабочей эксплуатации, техническом обслуживании, ремонте, хранении и транспортировке.

    Надёжность - важный показатель качества объекта. Его нельзя ни противопоставлять, ни смешивать с другими показателями качества. Явно недостаточной, например, будет информация о качестве установки очистки, если известно только то, что она обладает определенной производительностью и некоторым коэффициентом очистки, но неизвестно, насколько устойчиво сохраняются эти характеристики при ее работе. Бесполезна также информация о том, что установка устойчиво сохраняет присущие ей характеристики, но неизвестны значения этих характеристик. Вот почему в определение понятия надёжности входит выполнение заданных функций и сохранение этого свойства при использовании объекта по назначению.

    Надёжность является комплексным свойством, включающим в себя в зависимости от назначения объекта или условий его эксплуатации ряд простых свойств:

    · безотказность;

    · долговечность;

    · ремонтопригодность;

    · сохраняемость.

    Безотказность – свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

    Наработка – продолжительность или объем работы объекта, измеряемая в любых неубывающих величинах (единица времени, число циклов нагружения, километры пробега и т. п.).

    Долговечность – свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

    Ремонтопригодность – свойство объекта, заключающееся в его приспособленности к предупреждению и обнаружению причин возникновения отказов, поддержанию и восстановлению работоспособности путем проведения ремонтов и технического обслуживания.

    Сохраняемость – свойство объекта непрерывно сохранять требуемые эксплуатационные показатели в течение (и после) срока хранения и транспортирования.

    В зависимости от объекта надёжность может определяться всеми перечисленными свойствами или частью их. Например, надёжность колеса зубчатой передачи, подшипников определяется их долговечностью, а станка – долговечностью, безотказностью и ремонтопригодностью.

    2.1.4 Основные показатели надёжности

    Показатель надёжности количественно характеризует, в какой степени данному объекту присущи определенные свойства, обусловливающие надёжность. Одни показатели надёжности (например, технический ресурс, срок службы) могут иметь размерность, ряд других (например, вероятность безотказной работы, коэффициент готовности) являются безразмерными.

    Рассмотрим показатели составляющей надёжности - долговечность.

    Технический ресурс – наработка объекта от начала его эксплуатации или возобновления эксплуатации после ремонта до наступления предельного состояния. Строго говоря, технический ресурс может быть регламентирован следующим образом: до среднего, капитального, от капитального до ближайшего среднего ремонта и т. п. Если регламентация отсутствует, то имеется в виду ресурс от начала эксплуатации до достижения предельного состояния после всех видов ремонтов.

    Для невосстанавливаемых объектов понятия технического ресурса и наработки до отказа совпадают.

    Назначенный ресурс – суммарная наработка объекта, при достижении которой эксплуатация должна быть прекращена независимо от его состояния.

    Срок службы – календарная продолжительность эксплуатации (в том числе, хранение, ремонт и т. п.) от ее начала до наступления предельного состояния.

    На рис.2.2 приведена графическая интерпретация перечисленных показателей, при этом:

    t 0 = 0 – начало эксплуатации;

    t 1 , t 5 – моменты отключения по технологическим причинам;

    t 2 , t 4 , t 6 , t 8 – моменты включения объекта;

    t 3 , t 7 – моменты вывода объекта в ремонт, соответственно, средний и капитальный;

    t 9 – момент прекращения эксплуатации;

    t 10 – момент отказа объекта.

    Технический ресурс (наработка до отказа)

    ТР = t 1 + (t 3 – t 2) + (t 5 – t 4) + (t 7 – t 6) + (t 10 – t 8).

    Назначенный ресурс

    ТН = t 1 + (t 3 –t 2) + (t 5 – t 4) + (t 7 –t 6) + (t 9 –t 8).

    Срок службы объекта ТС = t 10 .

    Для большинства объектов электромеханики в качестве критерия долговечности чаще всего используется технический ресурс.

    2.2 Количественные показатели безотказности и математические модели надёжности

    2.2.1 Статистические и вероятностные формы представления показателей безотказности невосстанавливаемых объектов

    Наиболее важные показатели надёжности невосстанавливаемых объектов – показатели безотказности , к которым относятся:

    · вероятность безотказной работы;

    · плотность распределения отказов;

    · интенсивность отказов;

    · средняя наработка до отказа.

    Показатели надёжности представляются в двух формах (определениях):

    Статистическая (выборочные оценки);

    Вероятностная.

    Статистические определения (выборочные оценки) показателей получаются по результатам испытаний на надёжность.

    Допустим, что в ходе испытаний какого-то числа однотипных объектов получено конечное число интересующего нас параметра – наработки до отказа. Полученные числа представляют собой выборку некоего объема из общей «генеральной совокупности», имеющей неограниченный объем данных о наработке до отказа объекта.

    Количественные показатели, определённые для «генеральной совокупности», являются истинными (вероятностными) показателями, поскольку объективно характеризуют случайную величину – наработку до отказа.

    Показатели, определённые для выборки, и, позволяющие сделать какие-то выводы о случайной величине, являются выборочными (статистическими) оценками. Очевидно, что при достаточно большом числе испытаний (большой выборке) оценки приближаются к вероятностным показателям.

    Вероятностная форма представления показателей удобна при аналитических расчетах, а статистическая - при экспериментальном исследовании надежности.

    В дальнейшем для обозначения статистических оценок будем использовать знак ^ сверху.

    В дальнейших рассуждениях будем исходить из того, что испытания проходят N одинаковых объектов. Условия испытаний одинаковы, а испытания каждого из объектов проводятся до его отказа. Введем следующие обозначения:

    Случайная величина наработки объекта до отказа;

    N(t)- число объектов, работоспособных к моменту наработки t;

    n(t) - t;

    - число объектов, отказавших в интервале наработки ;

    D t - длительность интервала наработки.

    Вероятность безотказной работы (ВБР)

    и вероятность отказа (ВО)

    Статистическое определение ВБР (эмпирическая функция надёжности) определяется по формуле:

    т.е. ВБР есть отношение числа объектов( N ( t )) , безотказно проработавших до момента наработки t , к числу объектов, исправных к началу испытаний (t=0), т.е. к общему числу объектов N . ВБР можно рассматривать как показатель доли работоспособных объектов к моменту наработки t .

    Поскольку N(t)= N- n(t), то ВБР можно определить как

    (2)

    где - вероятность отказа (ВО).

    В статистическом определении ВО представляет эмпирическую функцию распределения отказов.

    Так как события, заключающиеся в наступлении или ненаступлении отказа к моменту наработки t , являются противоположными, то

    (3)

    Нетрудно убедиться, что ВБР является убывающей, а ВО - возрастающей функцией наработки. Справедливы следующие утверждения:

    1. В момент начала испытаний при t =0 число работоспособных объектов равно общему их числу N(t)=N(0)=N , а число объектов отказавших равно n(t)=n(0)=0. Поэтому , а ;

    2. При наработке t ® ¥ все объекты, поставленные на испытания, откажут, т.е. N( ¥ )=0 , а n( ¥ )=N .

    Поэтому, , а .

    При большом числе элементов (изделий) N 0 статистическая оценка практически совпадает с вероятностью безотказной работы P(t) , а - с .

    Вероятностное определение ВБР описывается формулой

    т.е. ВБР есть вероятность того, что случайная величина наработки до отказа T окажется больше некоторой заданной наработки t .

    Очевидно, что ВО будет являться функцией распределения случайной величины T и представляет из себя вероятность того, что наработка до отказа окажется меньше некоторой заданной наработки t :

    Q(t)= Вер{T (5)

    Графики ВБР и ВО приведены на рис. 2.3.

    Рис. 2.3. Графики вероятности безотказной работы и вероятности отказов

    Плотность распределения отказов (ПРО)

    Статистическое определение ПРО:

    [ед. наработки -1 ], (6)

    т.е. ПРО есть отношение числа объектов, отказавших в интервале наработки к произведению общего числа объектов n D t .

    Поскольку D n(t, t+ D t)= n(t+ D t)-n(t), где n(t+ D t) - число объектов, отказавших к моменту наработки t+ D t , то ПРО можно представить:

    где -оценка ВО в интервале наработки, т.е. приращения ВО за D t.

    ПРО по смыслу представляет частоту отказов, т.е. число отказов за единицу наработки, отнесенное к первоначальному числу объектов.

    Вероятностное определение ПРО следует из (7) при стремлении интервала наработки D t ® 0 и N ® ¥

    ПРО по существу является плотностью распределения случайной величины T наработки до отказа объекта. Один из возможных видов графика f(t) приведен на рис. 3 .

    Интенсивность отказов (ИО)

    Статистическое определение ИО описывается формулой

    [ ед.наработки -1 ] (9)

    т.е. ИО есть отношение числа объектов D n , отказавших в интервале наработки к произведению числа исправных объектов на момент t на длительность интервала наработки D t.

    Сравнивая (6) и (9) можно отметить, что ИО несколько полнее характеризует надежность объекта на момент наработки t , т.к. показывает частоту отказов, отнесенную к фактически работоспособному числу объектов на момент наработки t .

    Вероятностное определение ИО получим, умножив и поделив правую часть выражения (9) на N

    С учетом (7) , , можно представить

    ,

    откуда при стремлении D t ® 0 (интервала наработки) и N ® ¥ получаем: (10)

    Возможные виды графиков приведены на рис. 2.4.


    Рис. 2.4.

    Средняя наработка до отказа

    Рассмотренные выше показатели надежности P(t), Q(t), f(t) и полностью описывают случайную величину наработки до отказа T={t} . В тоже время для решения ряда практических задач бывает достаточно знать некоторые числовые характеристики этой случайной величины и, в первую очередь, среднюю наработку до отказа.

    Статистическое определение средней наработки до отказа

    где t i - наработка до отказа i -го объекта.

    При вероятностном определении средняя наработка до отказа представляет собой математическое ожидание (МО) случайной величины Т , и поэтому, как всякое МО, определяется:

    . (12)

    Очевидно, что с увеличением выборки испытаний (N ® ¥) средняя арифметическая наработка (оценка) сходится по вероятности с МО наработки до отказа.

    В то же время средняя наработка не может полностью характеризовать безотказность объекта. Так при равных средних наработках до отказа надежность объектов 1 и 2 может весьма существенно различаться (рис. 2.5).

    f(t) – плотность распределения отказов ПРО

    Рис. 2.5. Различие кривых ПРО при одинаковой средней наработке до отказа

    2.2.2 Математические модели надёжности

    Для решения задач по оценке надежности и прогнозированию работоспособности объекта необходимо иметь математическую модель, которая представлена аналитическими выражениями одного из показателей: P(t) или f(t ) или . Основной путь для получения модели состоит в проведении испытаний, вычислении статистических оценок и их аппроксимации аналитическими функциями.

    Опыт эксплуатации показывает, что изменение ИО подавляющего большинства объектов описывается U -образной кривой (рис. 2.6).

    Рис. 2.6 – Кривая изменения интенсивности отказа объекта

    Эту кривую можно условно разделить на три характерных участка: первый - период приработки объекта, второй – нормальная эксплуатация, третий - старение.

    Период приработки объекта имеет повышенную ИО, вызванную приработочными отказами, обусловленными дефектами производства, монтажа, наладки. Иногда с окончанием этого периода связывают гарантийное обслуживание объекта, когда устранение отказов производится изготовителем.

    В период нормальной эксплуатации ИО уменьшается и практически остается постоянной, при этом отказы носят случайный характер и появляются внезапно, прежде всего из-за несоблюдения условий эксплуатации, случайных изменений нагрузки, неблагоприятных внешних факторов и т. п. Именно этот период соответствует основному времени эксплуатации объекта.

    Возрастание ИО относится к периоду старения объекта и вызвано увеличением числа отказов от износа, старения и других причин, связанных с длительной эксплуатацией.

    Вид аналитической функции, описывающей изменение показателей надежности P(t) , f(t) или (t) , определяет закон распределения случайной величины, который выбирается в зависимости от свойств объекта, его условий работы и характера отказов.

    Экспоненциальное распределение

    Экспоненциальный (показательный) закон распределения называемый также основным законом надёжности, часто используют для прогнозирования надежности в период нормальной эксплуатации изделий, когда постепенные отказы еще не проявились и надежность характеризуется внезапными отказами. Эти объекты можно отнести к «не стареющим», поскольку они работают только на участке с =l =const (рис.2.6). Отказы вызываются неблагоприятным стечением многих обстоятельств и поэтому имеют постоянную интенсивность. Экспоненциальное распределение описывает наработку на отказ тех объектов, у которых в результате сдаточных испытаний (выходного контроля) отсутствует период приработки, а назначенный ресурс установлен до окончания периода нормальной эксплуатации.

    Плотность распределения экспоненциального закона описывается соотношением

    ,

    функция распределения этого закона - соотношением

    ,

    функция надёжности

    математическое ожидание случайной величины T

    ,

    дисперсия случайной величины T

    .

    Экспоненциальный закон в теории надёжности нашел широкое применение, так как он прост для практического использования. Почти все задачи, решаемые в теории надёжности, при использовании экспоненциального закона оказываются намного проще, чем при использовании других законов распределения. Основная причина такого упрощения состоит в том, что при экспоненциальном законе вероятность безотказной работы зависит только от длительности интервала и не зависит от времени предшествующей работы.

    Экспоненциальное распределение широко применяется для оценки надежности энергетических объектов.

    Графики изменения показателей надёжности при экспоненциальном распределении приведены на рис.2.7 .


    Рис. 2.7.

    Нормальное распределение

    Нормальное распределение является наиболее универсальным, удобным и широко применяемым. Считается, что наработка объекта подчинена нормальному распределению (нормально распределена), если ПРО описывается выражением:

    ,

    где a и b - параметры распределения, соответственно, МО и СКО, которые по результатам испытаний принимаются: , где и - оценки средней наработки до отказа и дисперсии ( - СКО).

    Т.о. ПРО имеет вид

    . ( - МО наработки).

    Колоколообразная кривая плотности распределения приведена на рис. 2.8.

    Интегральная функция распределения имеет вид

    .

    Рис. 2.8 Кривые плотности вероятности (а) и

    функции надежности (б) нормального распределения

    Вычисление интегралов заменяют использованием таблиц нормального распределения, при котором = 0 и s = 1. Для этого распределения функция плотности распределения отказов имеет одну переменную t и выражается зависимостью

    Величина t является центрированной (так как = 0) и нормированной (так как σ t = 1).

    Функция распределения соответственно запишется в виде:

    Значение функции распределения определяется формулой

    F ( t ) = 0,5 + Ф( u ) = Q ( t ) ;

    где Ф – функция Лапласа, u = (t - T 0)/s - квантиль нормированного нормального распределения. Т.е. функция распределения представляет собой ВО.

    При использовании функции Лапласа вместо интегральной функции распределения F 0 (t ) имеем

    ,

    ВО и ВБР, выраженные через функцию Лапласа, имеют вид

    , (Ф от (и ), а не умножить!!!)

    .

    Вероятность попадания случайной величины Х в заданный интервал значений от α до β вычисляют по формуле

    .

    Значения функции Лапласа Ф и u табулированы.

    Общий характер изменения показателей надёжности при нормальном распределении приведён на рис. 2.9 .

    Рис. 2.9.

    Нормальный закон распределения часто называют законом Гаусса. Этот закон играет важную роль и наиболее часто используется на практике по сравнению с другими законами распределения.

    Основная особенность этого закона состоит в том, что он является предельным законом, к которому приближаются другие законы распределения. В теории надежности его используют для описания постепенных отказов, когда распределение времени безотказной работы в начале имеет низкую плотность, затем максимальную и далее плотность снижается.

    Распределение всегда подчиняется нормальному закону, если на изменение случайной величины оказывают влияние многие, примерно равнозначные факторы.

    2.2.3 Расчёт характеристик надёжности невосстанавливаемых объектов при основном соединении элементов

    Если отказ системы наступает при отказе одного из элементов, то считают, что такая система имеет основное соединение элементов. Тогда ВБР изделия в течение времени t равна произведению ВБР её элементов в течение того же времени

    .

    Если значения ВБР близки к 1, то с достаточной для практики точностью можно использовать следующую приближённую формулу:

    .

    Если все элементы равнонадёжны, ИО системы будет

    .,

    Где N т - число типов элементов.

    Если система состоит из нескольких элементов с различными значениями ИО, то среднее значение определяют по формуле

    Если элементы функционируют в различных условиях или в различной степени подвержены влиянию внешних воздействующих факторов, то ИО элемента вычисляется по формуле

    ,

    где - ИО эл-та, работающего в нормальных условиях, - поправочные коэф-ты, зависящие от различных факторов.

    Поправочный коэф-т позволяет учесть внешние воздействия, главным образом механические перегрузки и влажность, поправочный коэф-т - влияние температуры и внутренних напряжений (как электрических, так и механических).

    Если элементы имеют не постоянную ИО, но существуют чётко выраженные временные интервалы, в течение которых ИО Эл-та в основном постоянна, то для расчёта используется т.н. эквивалентная интенсивность отказов. Например, если ИО за период t 1 равна l 1 , за период t 2 равна l 2 и т.д., то общая ИО за период времени Т= t 1 + t 2 + t 3 + t 4 +… будет

    2.2.4 Показатели надёжности восстанавливаемых объектов

    Большинство сложных технических систем с длительными сроками службы являются восстанавливаемыми, т.е. возникающие в процессе эксплуатации отказы систем устраняют при ремонте. Технически исправное состояние изделий в процессе эксплуатации поддерживают проведением профилактических и восстановительных работ.

    Для осуществляемых в процессе эксплуатации изделий работ по поддержанию и восстановлению их работоспособности характерны значительные затраты труда, материальных средств и времени. Как правило, эти затраты за время эксплуатации изделия значительно превышают соответствующие затраты на его изготовление. Совокупность работ по поддержанию и восстановлению работоспособности и ресурса изделий подразделяют на техническое обслуживание , и ремонт, которые, в свою очередь, подразделяют на профилактические работы , осуществляемые в плановом порядке и аварийные, проводимые по мере возникновения отказов или аварийных ситуаций.

    Свойство ремонтопригодности изделий влияет на материальные затраты и длительность простоев в процессе эксплуатации. Ремонтопригодность тесно связана с безотказностью и долговечностью изделий. Так, для изделий, с высоким уровнем безотказности, как правило, характерны низкие затраты труда и средств на поддержание их работоспособности.

    Показатели безотказности и ремонтопригодности изделий являются составными частями комплексных показателей, таких как коэффициенты готовности К г , оперативной готовности К ОГ и технического использования К т.и. . К показателям надёжности, присущим только восстанавливаемым элементам, следует отнести среднюю наработку на отказ, наработку между отказами, вероятность восстановления, среднее время восстановления, коэффициент готовности, коэффициент оперативной готовности и коэффициент технического использования.

    Средняя наработка на отказ - наработка восстанавливаемого элемента, приходящаяся, в среднем, на один отказ в рассматриваемом интервале суммарной наработки или определенной продолжительности эксплуатации:

    где t i - наработка элемента до i-го отказа; m - число отказов в рассматриваемом интервале суммарной наработки.

    Наработка между отказами определяется объемом работы элемента от i -гo отказа до (i + 1)-го, где i =1, 2,..., m.

    Среднее время восстановления одного отказа в рассматриваемом интервале суммарной наработки или определенной продолжительности эксплуатации

    где t вi - время восстановления i -го отказа.

    Коэффициент готовности К г представляет собой вероятность того, что изделие будет работоспособно в произвольный момент времени, кроме периодов выполнения планового технического обслуживания, когда применение изделия по назначению исключено. Этот показатель является комплексным, так как он количественно характеризует одновременно два показателя: безотказность и ремонтопригодность.

    В стационарном (установившемся) режиме эксплуатации и при любом виде закона распределения времени работы между отказами и времени восстановления коэффициент готовности определяют по формуле

    ,

    (Т о - средняя наработка на отказ; Т в - среднее время восстановления одного отказа).

    Таким образом, анализ формулы показывает, что надёжность изделия является функцией не только безотказности, но и ремонтопригодности. Это означает, что низкая надёжность может быть несколько компенсирована улучшением ремонтопригодности. Чем выше интенсивность восстановления, тем выше готовность изделия. Если время простоя велико, то готовность будет низкой.

    Другой важной характеристикой ремонтопригодности является коэффициент технического использования, который представляет собой отношение наработки изделия в единицах времени за некоторый период эксплуатации к сумме этой наработки и времени всех простоев, обусловленных устранением отказов, техническим обслуживанием и ремонтами за этот период. Коэффициент технического использования представляет собой вероятность того, что изделие будет работать в надлежащем режиме за время Т . Таким образом, К т. и. определяется двумя основными факторами - надёжностью и ремонтопригодностью.

    Коэффициент оперативной готовности К ОГ определяется как вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени (кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается) и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени.

    Из вероятностного определения следует, что

    К ОГ = К Г *P (t )

    Коэффициент технического использования характеризует долю времени нахождения элемента в работоспособном состоянии относительно рассматриваемой продолжительности эксплуатации. Период эксплуатации, для которого определяется коэффициент технического использования, должен содержать все виды технического обслуживания и ремонтов. Коэффициент технического использования учитывает затраты времени на плановые и неплановые ремонты, а также регламенты, и определяется по формуле

    K ти = t н /(t н + t в + t р + t о),

    где t н - суммарная наработка изделия в рассматриваемый промежуток времени; t в , t р и t о - соответственно суммарное время, затраченное на восстановление , ремонт и техническое обслуживание изделия за тот же период времени.

    2.2.5 Резервирование систем

    Резервирование - метод повышения надёжности объекта введением дополнительных элементов и функциональных возможностей сверх минимально необходимых для нормального выполнения объектом заданных функций. В этом случае отказ наступает только после отказа основного элемента и всех резервных элементов.

    Систему можно представить из ряда ступеней, выполняющих отдельные функции. Задача резервирования состоит в нахождении такого числа резервных образцов оборудования на каждой ступени, которое будет обеспечивать заданный уровень надёжности системы при наименьшей стоимости.

    Выбор наилучшего варианта зависит главным образом от того увеличения надёжности, которое можно достичь при заданных расходах

    Основной элемент - элемент основной физической структуры объекта, минимально необходимой для нормального выполнения объектом его задач.

    Резервный элемент - элемент, предназначенный для обеспечения работоспособности объекта в случае отказа основного элемента.

    Виды резервирования

    Структурное (элементное) резервирование - метод повышения надёжности объекта, предусматривающий использование избыточных элементов, входящих в физическую структуру объекта. Обеспечивается подключением к основной аппаратуре резервной таким образом, чтобы при отказе основной аппаратуры резервная продолжала выполнять ее функции.

    Резервирование функциональное - метод повышения надёжности объекта, предусматривающий использование способности элементов выполнять дополнительные функции вместо основных, и наряду с ними.

    Временное резервирование - метод повышения надёжности объекта, предусматривающий использование избыточного времени, выделенного для выполнения задач. Другими словами, временное резервирование - такое планирование работы системы, при котором создается резерв рабочего времени для выполнения заданных функций. Резервное время может быть использовано для повторения операции, либо для устранения неисправности объекта.

    Информационное резервирование - метод повышения надёжности объекта, предусматривающий использование избыточной информации сверх минимально необходимой для выполнения задач.

    Нагрузочное резервирование - метод повышения надёжности объекта, предусматривающий использование способности его элементов воспринимать дополнительные нагрузки сверх номинальных.

    С позиций расчёта и обеспечения надёжности технических систем необходимо рассматривать структурное резервирование.

    Способы структурного резервирования

    По способу подключения резервных элементов и устройств различают следующие способы резервирования (рис. 2.10).

    Резервирование раздельное (поэлементное) с постоянным включением резервных элементов (рис.2.11).

    Рис. 2.11 Резервирование раздельное с постоянным

    включением резервных элементов

    Такое резервирование возможно тогда, когда подключение резервного элемента не существенно изменяет рабочий режим устройства. Достоинство его - постоянная готовность резервного элемента, отсутствие затраты времени на переключение. Недостаток - резервный элемент расходует свой ресурс так же, как основной элемент.


    Рис. 2.10 Классификация способов структурного резервирования

    Резервирование раздельное с замещением отказавшего элемента одним резервным элементом (рис. 2.12). Это такой способ резервирования, при котором резервируются отдельные элементы объекта или их группы.

    Рис. 2.12 Резервирование раздельное с замещением

    отказавшего элемента

    В этом случае резервный элемент находится в разной степени готовности к замене основного элемента. Достоинство этого способа - резервный элемент сохраняет свой рабочий ресурс, либо может быть использован для выполнения самостоятельной задачи. Рабочий режим основного устройства не искажается. Недостаток - необходимость затрачивать время на подключение резервного элемента. Резервных элементов может быть меньше, чем основных.

    Отношение числа резервных элементов к числу резервируемых называется кратностью резервирования - m . При резервировании с целой кратностью величина m есть целое число, при резервировании с дробной кратностью величина m есть дробное несокращаемое число. Например, m =4/2 означает наличие резервирования с дробной кратностью, при котором число резервных элементов равно четырем, число основных - двум, а общее число элементов равно шести. Сокращать дробь нельзя , так как если m =4/2=2/1, то это означает, что имеет место резервирование с целой кратностью, при котором число резервных элементов равно двум, а общее число элементов равно трём.

    При включении резерва по способу замещения резервные элементы до момента включения в работу могут находиться в трёх состояниях:

    Нагруженном («горячем») резерве;

    Облегченном («тёплом») резерве;

    Ненагруженном («холодном») резерве.

    Нагруженный («горячий») резерв - резервный элемент, находящийся в том же режиме, что и основной.

    Облегченный («тёплый») резерв - резервный элемент, находящийся в менее нагруженном режиме, чем основной.

    Ненагруженный («холодный») резерв - резервный элемент, практически не несущий нагрузок.

    Резервирование общее с постоянным подключением, либо с замещением (рис. 2.13). В этом случае резервируется объект в целом, а в качестве резервного - используется аналогичное сложное устройство. Этот способ менее экономен, чем раздельное резервирование. При отказе, например, первого основного элемента возникает необходимость подключать всю технологическую резервную цепочку.

    Рис. 2.13 - Резервирование общее

    Резервирование мажоритарное ("голосование" n из m элементов) (рис. 2.14). Этот способ основан на применении дополнительного элемента - его называют мажоритарный или логический или кворум-элемент. Он позволяет вести сравнение сигналов, поступающих от элементов, выполняющих одну и ту же функцию. Если результаты совпадают, тогда они передаются на выход устройства. На рис. 2.14 изображено резервирование по принципу голосования "два из трёх", т.е. любые два совпадающих результата из трёх считаются истинными и проходят на выход устройства. Можно применять соотношения три из пяти и др. Главное достоинство этого способа - обеспечение повышения надёжности при любых видах отказов работающих элементов. Любой вид одиночного отказа элемента не окажет влияния на выходной результат.

    Эффективно в системах управления процессами.

    Рис. 2.14 - Резервирование мажоритарное

    2.2.6 Типовые структуры расчета надёжности

    Под структурной схемой надёжности понимается наглядное представление (графическое или в виде логических выражений) условий, при которых работает или не работает исследуемый объект (система, устройство, технический комплекс и т.д.). Типовые структурные схемы представлены на рис. 2.15.

    Рис. 2.15 - Типовые структуры расчёта надёжности

    Простейшей формой структурной схемы надёжности является параллельно-последовательная структура. На ней параллельно соединяются элементы, совместный отказ которых приводит к отказу. В последовательную цепочку соединяются такие элементы, отказ любого из которых приводит к отказу объекта.

    На рис. 2.15,а представлен вариант параллельно-последовательной структуры. По этой структуре можно сделать следующее заключение. Объект состоит из пяти частей. Отказ объекта наступает тогда, когда откажет или элемент 5, или узел, состоящий из элементов 1-4. Узел может отказать тогда, когда одновременно откажет цепочка, состоящая из элементов 3,4 и узел, состоящий из элементов 1,2. Цепь 3-4 отказывает, если откажет хотя бы один из составляющих ее элементов, а узел 1,2 - если откажут оба элемента, т.е. элементы 1,2. Расчёт надёжности при наличии таких структур отличается наибольшей простотой и наглядностью.

    В тех случаях, когда условие работоспособности не удаётся представить в виде простой параллельно-последовательной структуры используют или логические функции, или графы и ветвящиеся структуры, по которым оставляются системы уравнений работоспособности.

    2.2.6.1 Расчёт надёжности, основанный на использовании параллельно-последовательных структур

    На рис. 2.16 представлено параллельное соединение элементов 1, 2, 3. Это означает, что устройство, состоящее из этих элементов, переходит в состояние отказа после отказа всех элементов при условии, что все элементы системы находятся под нагрузкой, а отказы элементов статистически независимы.

    Рис. 2.16. Блок-схема системы с параллельным соединением элементов

    Условие работоспособности устройства можно сформулировать следующим образом: устройство работоспособно, если работоспособен элемент 1 или элемент 2, или элемент 3, или элементы 1 и 2, 1; и 3, 2; и 3, 1; и 2; и 3.

    Вероятность безотказного состояния устройства, состоящего из n параллельно соединённых элементов определяется по теореме сложения вероятностей совместных случайных событий как

    ,

    т.е. при параллельном соединении независимых (в смысле надёжности) элементов их ненадёжности () перемножаются.

    Интенсивность отказов (при интенсивности отказов элементов λ i ), определяется как

    .

    В случае, когда интенсивности отказов всех элементов одинаковы, среднее время безотказной работы системы Т 0

    2.2.6.2 Включение резервного оборудования системы замещением

    В данной схеме включения n одинаковых образцов оборудования только один находится все время в работе (рис. 2.17). Когда работающий образец выходит из строя, его непременно отключают, и в работу вступает один из резервных (запасных) элементов. Этот процесс продолжается до тех пор, пока все резервные образцы не будут исчерпаны.

    Рис. 2.17 - Блок-схема системы включения резервного оборудования замещением

    Примем для этой системы следующие допущения:

    1. Отказ системы происходит, если откажут все n элементов.

    2. Вероятность отказа каждого образца оборудования не зависит от состояния остальных (n -1) образцов (отказы статистически независимы).

    3. Отказывать может только оборудование, находящееся в работе, и условная вероятность отказа в интервале (t , t+dt) равна λ dt ; запасное оборудование не может выходить из строя до того, как оно будет включено в работу.

    4. Переключающие устройства считаются абсолютно надёжными.

    5. Все элементы идентичны. Резервные элементы имеют характеристики как новые.

    Система способна выполнять требуемые от нее функции, если исправен по крайней мере один из n образцов оборудования. В этом случае при экспоненциальном законе и «холодном» резерве надёжность равна просто сумме вероятностей состояний системы, исключая состояние отказа, т.е.

    т – кратность резервирования.

    ,

    Где λ и Т 0 – ИО и средняя наработка до первого отказа основного устройства.

    При «горячем» резерве –

    ,

    2.3 Методы обеспечения надёжности сложных систем

    2.3.1 Конструктивные способы обеспечения надёжности

    Одной из важнейших характеристик сложных технических систем является их надёжность. Требования к количественным показателям надёжности возрастают тогда, когда отказы технической системы приводят к большим затратам материальных средств, либо угрожают безопасности (например, при создании атомных лодок, самолётов или изделий военной техники). Один из разделов технического задания на разработку системы - раздел, определяющий требования к надёжности. В этом разделе указывают количественные показатели надёжности, которые необходимо подтверждать на каждом этапе создания системы.

    На этапе разработки технической документации, являющейся комплектом чертежей, технических условий, методик и программ испытаний, выполнение научно-исследовательских расчётов, подготовки эксплуатационной документации и обеспечение надёжности осуществляют способами рационального проектирования и расчётно-экспериментальными методами оценки надёжности.

    Существуют несколько методов, с помощью которых можно повысить конструктивную надёжность сложной технической системы. Конструктивные методы повышения надёжности предусматривают создание запасов прочности металлоконструкций, облегчение режимов работы электроавтоматики, упрощение конструкции, использование стандартных деталей и узлов, обеспечение ремонтопригодности, обоснованное использование методов резервирования.

    Анализ и прогнозирование надёжности на стадии проектирования даёт необходимые данные для оценки конструкции. Такой анализ проводят для каждого варианта конструкции, а также после внесения конструктивных изменений. При обнаружении конструктивных недостатков, снижающих уровень надёжности системы, проводят конструктивные изменения и корректируют техническую документацию.

    2.3.2 Технологические способы обеспечения надёжности изделий в процессе изготовления

    Одним из основных мероприятий на стадии серийного производства, направленных на обеспечение надёжности технических систем, является стабильность технологических процессов. Научно обоснованные методы управления качеством продукции позволяют своевременно давать заключение о качестве выпускаемых изделий. На предприятиях промышленности применяют два метода статистического контроля качества: текущий контроль технологического процесса и выборочный метод контроля.

    Метод статистического контроля (регулирования) качества позволяет своевременно предупреждать брак в производстве и, таким образом, непосредственно вмешиваться в технологический процесс.

    Выборочный метод контроля не оказывает непосредственного влияния на производство, так как он служит для контроля готовой продукции, позволяет выявить объём брака, причины его возникновения в технологическом процессе или же качественные недостатки материала.

    Анализ точности и стабильности технологических процессов позволяет выявить и исключить факторы, отрицательно влияющие на качество изделия. В общем случае, контроль стабильности технологических процессов можно проводить следующими методами: графоаналитическим с нанесением на диаграмму значений измеряемых параметров; расчётностатистическим для количественной характеристики точности и стабильности технологических процессов; а также прогнозирования надёжности технологических процессов на основе количественных характеристик приведенных отклонений.

    2.3.3 Обеспечение надёжности сложных технических систем в условиях эксплуатации

    Надёжность технических систем в условиях эксплуатации определяется рядом эксплуатационных факторов, таких как, квалификация обслуживающего персонала, качество и количество проводимых работ по техническому обслуживанию, наличие запасных частей, использование измерительной и проверочной аппаратуры, а также наличие технических описаний и инструкций по эксплуатации.

    В первом приближении можно принять, что все отказы, возникающие в процессе эксплуатации, являются независимыми. Поэтому надёжность всей системы при предположении независимости отказов равна:

    Р = Р 1 * Р 2 * Р 3

    где Р 1 ; Р 2 ; Р 3 - вероятности безотказной работы системы соответственно по непрогнозируемым внезапным отказам, внезапным отказам, которые могут быть предотвращены при своевременном техническом обслуживании, и постепенным отказам.

    Одной из причин отсутствия отказов элементов системы является качественное техническое обслуживание, которое направлено на предотвращение прогнозируемых внезапных отказов. Вероятность безотказной работы системы, обусловленная качеством обслуживания, равна:

    где P i об – вероятность безотказной работы i –го элемента, связанная с техническим обслуживанием.

    По мере совершенствования обслуживания значение вероятности безотказной работы Р об приближается к единице.

    Замена элементов с возрастающей во времени интенсивностью отказов возможна во всех сложных технических системах. С целью уменьшения во времени интенсивности отказов вводят техническое обслуживание системы, которое позволяет обеспечить поток отказов у сложных систем с конечной интенсивностью в течение заданного срока эксплуатации, т.е. сделать близким к постоянному.

    В процессе эксплуатации при техническом обслуживании интенсивность отказов системы, с одной стороны, имеет тенденцию к увеличению, а с другой стороны, - тенденцию к уменьшению в зависимости от того, на каком уровне проведено обслуживание. Если техническое обслуживание проведено качественно, то интенсивность отказов уменьшается, а если это обслуживание проведено плохо, то увеличивается.

    Используя накопленный опыт, можно всегда выбрать тот или иной объем функционирования, который обеспечит нормальную работу системы до очередного технического обслуживания с заданной вероятностью безотказной работы. Или, наоборот, задаваясь последовательностью объемов функционирования, можно определить приемлемые сроки проведения технического обслуживания, обеспечивающего работу системы на заданном уровне надёжности.

    2.3.4 Пути повышения надёжности сложных технических систем при эксплуатации

    Для повышения надёжности сложных технических систем в условиях эксплуатации проводят ряд мероприятий, которые можно подразделить на следующие четыре группы:

    1) разработку научных методов эксплуатации;

    2) сбор, анализ и обобщение опыта эксплуатации;

    3) связь проектирования с производством изделий;

    4) повышение квалификации обслуживающего персонала.

    Научные методы эксплуатации включают в себя научно обоснованные методы подготовки изделия к работе, проведения технического обслуживания, ремонта и других мероприятий по повышению надёжности сложных технических систем в процессе их эксплуатации. Порядок и технологию проведения этих мероприятий описывают в соответствующих руководствах и инструкциях по эксплуатации конкретных изделий. Более качественное выполнение эксплуатационных мероприятий по обеспечению надёжности изделий машиностроения обеспечивается результатами статистического исследования надёжности этих изделий. При эксплуатации изделий большую роль играет накопленный опыт. Значительную часть опыта эксплуатации используют для решения частных организационно-технических мероприятий. Однако накопленные данные необходимо использовать не только для решения задач сегодняшнего дня, но и для создания будущих изделий с высокой надёжностью.

    Большое значение имеет правильная организация сбора сведений об отказах. Содержание мероприятий по сбору таких сведений определяется типом изделий и особенностями эксплуатации этих изделий. Возможными источниками статистической информации могут быть сведения, полученные по результатам различных видов испытаний и эксплуатации, которые оформляются периодически в виде отчетов о техническом состоянии и надёжности изделий.

    Изучение особенностей их поведения дает возможность использовать накопленные данные для проектирования будущих изделий. Таким образом, сбор и обобщение данных об отказах изделий - одна из важнейших задач, на которую должно быть обращено особое внимание.

    Эффективность эксплуатационных мероприятий во многом зависит от квалификации обслуживающего персонала. Однако влияние этого фактора неодинаково. Так, например, при выполнении в процессе обслуживания довольно простых операций влияние высокой квалификации работника сказывается мало, и наоборот, квалификация обслуживающего персонала играет большую роль при выполнении сложных операций, связанных с принятием субъективных решений (например, при регулировании клапанов и систем зажигания в автомобилях, при ремонте телевизора и т.д.).

    2.3.5 Организационно-технические методы по восстановлению и поддержанию надёжности техники при эксплуатации

    Известно, что в процессе эксплуатации изделие определенное время используют по назначению для выполнения соответствующей работы, некоторое время она транспортируется и хранится, а часть времени идет на техническое обслуживание и ремонт. При этом для сложных технических систем в нормативно-технической документации устанавливают виды технических обслуживании (TO-1, TO-2,...) и ремонтов (текущий, средний или капитальный).

    На стадии эксплуатации изделий проявляются технико-экономические последствия низкой надёжности, связанные с простоями техники и затратами на устранение отказов и приобретение запасных частей. С целью поддержания надёжности изделий на заданном уровне в процессе эксплуатации необходимо проводить комплекс мероприятий, который может быть представлен в виде двух групп - мероприятия по соблюдению правил и режимов эксплуатации; мероприятия по восстановлению работоспособного состояния.

    К первой группе мероприятий относятся обучение обслуживающего персонала, соблюдение требований эксплуатационной документации, последовательности и точности проводимых работ при техническом обслуживании, диагностический контроль параметров и наличие запасных частей, осуществление авторского надзора и т.п.

    К основным мероприятиям второй группы относятся корректирование системы технического обслуживания, периодический контроль за состоянием изделия и определение средствами технического диагностирования остаточного ресурса и предотказного состояния, внедрение современной технологии ремонта, анализ причин отказов и организация обратной связи с разработчиками и изготовителями изделий.

    Многие изделия значительную часть времени эксплуатации находятся в состоянии хранения, т.е. не связаны с выполнением основных задач. Для изделий, работающих в таком режиме, преобладающая часть отказов связана с коррозией, а также воздействием пыли, грязи, температуры и влаги. Для изделий, находящихся значительную часть времени в эксплуатации, преобладающая часть отказов связана с износом, усталостью или механическим повреждением деталей и узлов. В состоянии простоя интенсивность отказов элементов существенно меньше, чем в рабочем состоянии. Так, например, для электромеханического оборудования это соотношение соответствует 1:10, для механических элементов это соотношение составляет 1:30, для электронных элементов 1:80.

    Необходимо отметить, что с усложнением техники и расширением областей её использования возрастает роль этапа эксплуатации техники в суммарных затратах на создание и использование технических систем. Затраты на поддержание в работоспособном состоянии за счет технических обслуживании и ремонтов превышают стоимость новых изделий в следующее число раз: тракторов и самолетов в 5-8 раз; металлорежущих станков в 8-15 раз; радиоэлектронной аппаратуры в 7-100 раз.

    Техническая политика предприятий должна быть направлена на снижение объемов и сроков проведения работ по техническому обслуживанию и ремонту техники за счет повышения надёжности и долговечности основных узлов.

    Консервация машины в состоянии поставки помогает сохранить её работоспособность, как правило, в течение 3-5 лет. Для поддержания надёжности машины в процессе эксплуатации на заданном уровне объем производства запасных частей должен составлять 25-30 % стоимости машин.

    Нашли ошибку?
    Выделите ее и нажмите:
    CTRL+ENTER